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ABSTRACT

The Occurrence of the Very Rare Autosomal Dominant Spi-
nocerebellar Ataxia Subtypes SCA15, SCA31, and SCA36 in
Poland and Its Implications for Clinical Practice

Elert-Dobkowska E.', Radziwonik-Fraczyk W.", Stepniak I.",
Ziora-Jakutowicz K., Beetz Ch.?3, Zaremba J.", Sulek A.*

" Department of Genetics, Institute of Psychiatry and Neurolo-
gy, Warsaw, Poland; ? Department of Chemistry and Laboratory
Medicine, Jena University Hospital, Jena, Germany; ° Centogene,
Rostock, Germany; * Faculty of Medicine, Lazarski University,
Warsaw, Poland

STRESZCZENIE

Wystepowanie bardzo rzadkich autosomalnie dominujacych
postaci ataksji rdzeniowo-mézdzkowych SCA15, SCA31
i SCA36 w Polsce i jego implikacje dla praktyki klinicznej

Elert-Dobkowska E.', Radziwonik-Fraczyk W.", Stepniak 1.7,
Ziora-Jakutowicz K., Beetz Ch.*>*, Zaremba J.", Sutek A.*

! Zakfad Genetyki, Instytut Psychiatrii i Neurologii, Warszawa,
Polska; ? Zaktad Chemii i Medycyny Laboratoryjnej, Szpital
Uniwersytecki w Jenie, Jena, Niemcy; ° Centogene, Rostock,
Niemcy; * Wydziat Medyczny, Uczelnia tazarskiego, Warszawa,
Polska

The autosomal dominant spinocerebellar ataxias (SCAs) are a ge-
netically and clinically heterogeneous group of disorders charac-
terized by degenerative changes in the brain and spinal cord, with
disease onset ranging from infancy to adulthood. The most common
SCAs are polyglutamine expansion SCAs, accounting for 45% of
all autosomal dominant cerebellar ataxias. At the same time, SCA
subtypes with rare or ultra-rare frequencies occur within the larger
group. The molecular diagnostics of SCAs can be complicated and
challenging due to the variability of genetic causes, including expan-
sions of different repeats in coding or non-coding regions of genes,
conventional mutations, and copy number variations. It is estimated
that approximately 30% of patients with autosomal dominant cere-
bellar ataxia remain undiagnosed at the molecular level. In this study,
we used polymerase chain reaction (PCR), repeat-primed PCR (RP-
PCR), multiplex ligation-dependent probe amplification (MLPA),
and Sanger sequencing to assess the occurrence of SCA15,
SCA31, and SCA36 in Poland. Two of these rare SCA subtypes are
caused by dynamic mutations, whereas SCA15 is caused by copy
number variations, all exhibiting autosomal dominant inheritance.

Autosomalnie dominujgce ataksje rdzeniowo-mézdzkowe (SCA)
stanowig genetycznie i klinicznie heterogenng grupe chordb, ktére
charakteryzujg sie zmianami zwyrodnieniowymi mozgu i rdzenia kre-
gowego oraz zroznicowanym poczagtkiem choroby, tj. od niemowlec-
twa do dorostosci. Do najczestszych SCA zalicza sie poliglutaminowe
SCA zwigzane z ekspansjg powtérzen, ktoére stanowig 45% wszyst-
kich autosomalnie dominujgcych ataksji mozdzkowych. Jednocze-
$nie najliczniejsza grupa sg pozostate podtypy SCA z rzadkg lub
ultra rzadkg czestoscig wystepowania. Diagnostyka molekularna
SCA moze by¢ skomplikowana i stanowi¢ duze wyzwanie ze wzgle-
du na zréznicowane przyczyny genetyczne, w tym ekspansje roz-
nych powtérzen w kodujgcych lub niekodujgcych regionach gendw,
konwencjonalne mutacje i zmiany liczby kopii. Zaktada sig, ze okofo
30% pacjentow z autosomalnie dominujgcg ataksjg mozdzkowg po-
zostaje niezdiagnozowanych na poziomie molekularym. W' niniej-
szym badaniu zastosowano reakcje faricuchowg polimerazy (PCR),
zmodyfikowang reakcie RP-PCR, zalezng od ligacji multipleksowag
amplifikacje sond (MLPA) i sekwencjonowanie metodg Sangera w celu
oceny czestosci wystepowania SCA15, SCA31 i SCA36 w Polsce.
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The cohort consisted of patients from across Poland who were first
clinically diagnosed with genetic ataxia, after which the most com-
mon SCA subtypes were excluded. None of the 350 tested atax-
ia patients had a large deletion in the ITPR1 gene, which causes
SCA15. However, expansions of intronic hexanucleotide repeats in
the NOP56 gene, causing SCA36, were identified in 11 individuals.
These are the first Polish patients with a confirmed molecular diag-
nosis of SCA36. Moreover, distinct pentanucleotide repeats in the
BEANT1 gene were identified in some Polish individuals. The identifi-
cation of SCA36 among Polish patients indicates the need for genet-
ic testing for SCA36 in the diagnostic setting in patients suspected of
having a rare form of inherited ataxia.

Keywords: Autosomal dominant cerebellar ataxia, SCA15, SCA31,
SCA36, RP-PCR, MLPA

Introduction

Spinocerebellar ataxias (SCAs) belong to a group
of neurodegenerative disorders that are hetero-
geneous in terms of clinical manifestations, inher-
itance patterns, and molecular backgrounds. The
known and potential causes of these diseases
may comprise various types of mutations, includ-
ing single-base substitutions, deletions, insertions,
duplications, or dynamic mutations resulting in the
multiplication of microsatellite repeats of variable
length and sequence [1]. Both point mutations and
microsatellite repeats can be located in different
regions of genes, such as the 5’UTR of specific
mMRNAs (e.g., SCA12), exons (e.g., SCA27), introns
(e.g., SCA10), or the JUTR (e.g., SCA8) [2]. To
date, more than 40 subtypes of SCAs have been de-
scribed, including 17 caused by dynamic mutations
(SCA1-3, 6-8, 10, 12, 17, 27B, 31, 36, 37, DRPLA
(dentatorubral-pallidoluysian atrophy), FRDA (Frie-
dreich ataxia), FXTAS (fragile X tremor/ataxia syn-
drome), and CANVAS (cerebellar ataxia, neuropa-
thy, and vestibular areflexia syndrome)) [3—6]. The
remaining types are caused predominantly by point
mutations. This study focuses on selected SCA sub-
types with dominant inheritance mode and charac-
terized by sequence length changes in the corre-
sponding genes presenting as deletions in ITPR1
(MIM #147265) gene or insertions/expansions of
microsatellite repeats in the BEAN1 (MIM #612051)
gene and expansion of the intronic repeats in the
NOP56 (MIM #614154) gene, responsible for SCA15
(MIM #606658), SCA31 (MIM #117210) and SCA36
(MIM #614153), respectively [7-9].

Until now, the clinical diagnosis of inherited
ataxias has been based on criteria such as clinical

Dwa sposréd tych rzadkich podtypéw SCA sg spowodowane muta-
cjami dynamicznymi, podczas gdy SCA15 jest spowodowana zmia-
ng liczby kopii, przy czym wszystkie sq dziedziczone w sposoéb auto-
somalny dominujgcy. Badang grupe stanowili pacjenci pochodzgcy
z cafej Polski, u ktorych poczgtkowo postawiono kliniczng diagnoze
ataksji uwarunkowanej genetycznie, a nastepnie wykluczono inne,
najczestsze podtypy SCA. U zadnego z 350 badanych pacjentéw
z podejrzeniem ataksji nie wykryto duzej delecji w genie ITPR1, ktora
Jest przyczyng SCA15. Natomiast u 11 0séb stwierdzono ekspansje
intronowych heksanukleotydowych powtérzen w genie NOP56, kt6-
ra jest przyczyng SCA36. Sg to pierwsi polscy pacjenci z potwierdzo-
ng diagnozg molekularng SCA36. Co wiecej, u niektérych pacjentéw
polskiego pochodzenia wykryto réZzne pentanukleotydowe powtorze-
nia w genie BEAN1. Identyfikacja SCA36 wsrod polskich pacjentéw
wskazuje na potrzebe przeprowadzania badarn genetycznych w kie-
runku SCA36 w postepowaniu diagnostycznym w przypadku pacjen-
téw z podejrzeniem rzadkiej postaci ataksji dziedziczney.

Stowa kluczowe: autosomalnie dominujgca ataksjia mézdzkowa,
SCA15, SCA31, SCA36, RP-PCR, MLPA

features, age at symptom onset, family history, and
brain magnetic resonance imaging (MRI), which
are subsequently confirmed or excluded by genetic
testing. The current classification system correlates
mutations with the most frequent gene-disease
correlation (one mutation = one disease). However,
mutations within the same gene and causing differ-
ent diseases were described in previous reports;
for example, mutations in the ITPR1 or CACNA1A
genes are associated with SCA15, SCA16, and
SCA29 [4] or SCAB, EA2 (episodic ataxia type 2),
and FHM1 (familial hemiplegic migraine type 1) [10],
respectively. Recent research suggests there may
be additional dependencies and modifying factors
related to gene interactions [11]. Given the genet-
ic heterogeneity of SCAs, gene testing is complex
and requires various molecular techniques tailored
to the specific genetic defect. Currently, genotyp-
ing based on the polymerase chain reaction (PCR)
can detect small expansions in coding or non-cod-
ing regions of the genome, confirming diagnoses
of conditions such as SCA1, SCA2, SCA12, and
SCA17. However, detecting large expansions re-
quires additional methods such as RP-PCR (e.g.,
for SCA8, SCA36, FRDA, and FXTAS) or hybridiza-
tion techniques. The subsequent method, essential
for determining the copy number of DNA se-
quences, is multiplex ligation-dependent probe am-
plification (MLPA), which is useful for detecting de-
letions (e.g., SCA15, SCA16) or duplications (e.g.,
SCAZ20) [12].

This study aimed to identify ultra-rare SCA sub-
types caused by dynamic and copy number muta-
tions using various molecular techniques in a co-
hort of patients clinically diagnosed with inherited
ataxia.
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Materials and methods

DNA samples

Retrospective genetic analyses of SCA15, SCA31,
and SCA36 were performed on 350 unrelated Polish
patients (probands) representing 350 different families
who exhibited signs of cerebellar ataxia and tested
negative for the repeat expansions causing SCA1-3,
6, 7, 8, 12, and 17. Molecular analysis of SCA31 was
performed on 331 of these patients, while 350 individu-
als were examined for SCA15 and SCA36. Most of the
index patients had a positive family history. For SCA31
analysis, a control group comprised 65 elderly indi-
viduals without neurological symptoms (healthy in-
dividuals aged 60+). Blood samples were collected
after obtaining informed consent from all participants
under protocols approved by the Bioethical Commis-
sion of the Institute of Psychiatry and Neurology in War-
saw (resolution number: 30/2021, dated 17.11.2021).
Genomic DNA was extracted from peripheral blood
leukocytes using either the standard phenol/chloro-
form method or automated isolation on a MagNA Pure
Compact Nucleic Acid Isolation System (Roche Instru-
ment Center AG, Rotkreuz, Japan).

Molecular genetic analyses

PCR (polymerase chain reaction) — amplification of
gene-specific regions containing microsatellite motifs
was performed using fluorescently labeled primers,
followed by electrophoresis of the PCR products on
a capillary sequencer (ABI PRISM 3130 Genetic
Analyzer, Applied Biosystems/Hitachi, Tokyo, Japan)
with the POP7 polymer. The GS500-ROX internal
size standard was used to determine the number of
microsatellite repeats in BEAN1 (SCA31) and NOP56
(SCA36). Primer sequences used for PCR SCA31
test: Reverse 5 6-FAM-CAGCGGGGTGAGAGAGT-
TACTG 3', Forward 5 GGCATAGTGGCACATGCATG
3’. Primers for PCR SCA36: Reverse 5 AACGCA-
ACCTCAGCGTCT 3, Forward 5 6-FAM-CGACGG-
TGGGGGTTTC 3. Primers were designed using the
Primer3Plus tool (https://www.primer3plus.com/index.
html).

RP-PCR (repeat-primed PCR) — for SCA36 ampli-
fication of gene-specific regions containing microsat-
ellite repeats to exclude or confirm large expansions.
This method employed three primers, including a flu-
orescently labeled locus-specific primer flanking the
repeat and paired primers amplifying multiple prim-
ing sites within the repeat. A characteristic product
ladder enabled indirect, qualitative, and rapid iden-
tification of large pathogenic variants with the hex-
anucleotide (GGCCTG), expansion in the NOP56
gene. Primers for RP-PCR SCA36: Second reverse

Review of Medical Practice, 2024; Vol. XXX, No. 4

primer 5° TACGCATCCCAGTTTGAGACG 3, For-
ward primer 5 6FAM-TTTCGGCCTGCGTTCGGG
3’, First reverse primer 5 TACGCATCCCAGTTTGA-
GACGCAGGCCCAGGCCCAGGCCCAGGCC 3’ [9].
Capillary electrophoresis was used to assess the
length and structure of the products.

MLPA (Multiplex ligation-dependent probe amplifi-
cation) — was used to detect deletions within the ITPR1
gene (SCA15). The reagents contained probes for ex-
ons and control probes annealing to complementary
regions on autosomal chromosomes. These probes
were designed by Dr. Christian Beetz (Institute of Clin-
ical Chemistry, Jena, Germany). Heterozygous dele-
tions of target sequences resulted in a 35-50% re-
duction in the relative peak area of the amplification
product for the affected probe.

Sanger Sequencing based on the fluorescently la-
beled dideoxynucleotides enabled verification of the
number of repeats obtained by capillary electrophore-
sis and determination of the pentanucleotide repeats
structure in the BEAN1 gene. The sequencing prod-
ucts were separated by electrophoresis in a dena-
turing polyacrylamide slab gel. Primer sequences for
Sanger sequencing SCA31 were the same as those
used for the PCR SCA31 test, but without labeling
the reverse primer with 6-FAM. Using a UV transillu-
minator, proper single alleles in heterozygotes were
excised from a 2.0% agarose gel and purified with the
Zymoclean™ Gel DNA Recovery Kit (Zymo Research,
Irvine, CA, USA) following the manufacturer’s proto-
col. DNA concentration for each purified sample was
measured using a NanoDrop™ 2000 Spectrophoto-
meter (Thermo Scientific). Purified PCR samples were
subsequently sequenced using the BigDye XTermi-
nator® Purification Kit (Applied Biosystems), and the
BigDye® Terminator v3.1 Cycle Sequencing Kit (Ap-
plied Biosystems).

Results

Deletion analysis in SCA15

None of the 350 ataxia patients screened for copy
number variations (CNVs) using MLPA had a deletion
in the ITPR1 gene (Figure 1).

Number of microsatellite repeats in the
BEANT1 gene

The range of pentanucleotide repeats (SCA31) was
9-59 in the control group and 10-76 in the patient
group (Figure 2). Homozygosity in the control group
was 27.4%. The most common allele in both the con-
trol group and patients was the allele with 17 repeats,
occurring in 26.2% and 23.9% of cases, respectively.
The next most common alleles in the control group
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and patients were those with 19 repeats (13.9% and
16.0%, respectively) and 18 repeats (11.5% and
11.6%, respectively). For alleles with more than 23 re-
peats, the incidence in the control samples ranged
from 0.8% to 1.5%. However, the occurrence of alleles
with more than 26 repeats among patients was lower,
ranging from 0.2% to 0.8%.

The structure of the microsatellite repeats in
the BEAN1 gene

Sanger sequencing of the BEANT gene regions
revealed that the common element in most of the
12 sequenced alleles was the (TAAAA) motif, oc-
curring in a range of 1-24 repeats. These 12 se-
quenced alleles included seven homozygotes, two
normal (smaller) alleles, and three large alleles, all
of which were from the control group. Additionally,
one large allele with 50 pentanucleotide repeats was
identified in a patient. Other identified pentameric
repeat tracts in these alleles were: (TAACA) in the
range of 26-34 repeats, and (AAAAA) , where n=1
(Table 1, Figure 3).

The smallest sequenced allele contained 10 pen-
tanucleotide repeats: (TAAAA),(TAA),(TAAAA),. The
largest sequenced allele contained 57 repeats: (TAA-
CA),,(T),(TAAAA),.(AAA),. Both alleles were detected
in heterozygotes from the control group.

Expansions in the NOP56 gene

The normal range of alleles observed in Polish
patients contained 3 to 10 (GGCCTG), hexanu-
cleotide repeats. RP-PCR analysis identified the
expansion of intronic hexanucleotide repeat re-
gions in the NOP56 gene, which causes SCA36,
in seven families. This expansion was confirmed in
11 affected individuals, and all exhibited the chara-
cteristic ladder pattern. However, detailed clinical
characteristics will be the subject of further study.
RP-PCR enables the presence or absence of an
expansion to be confirmed or excluded by display-
ing or not displaying the characteristic ladder pat-
tern, respectively. However, it does not allow for
the exact determination of repeat numbers in ex-
panded alleles.
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Table 1. The structure of pentanucleotide repeats in the BEAN1 gene among the control group (C1-C11) and the patient (P1)

Structure of pentanucleotide repeats in BEAN1 gene Number of pentanucleotide repeats
C1 (TAAAA).(TAA).(TAAAA), 10
Cc2 (TAAAA)..(TAA),(TAAAA), 15
C3-C5 (TAAAA),(TAA),(TAAAA), 17
C6-C8 (TAAAA),(TAA),(TAAAA), 18
C9 (TAACA), (TAAAA) (TAA), 36
Cc10 (TAACA),(T),(TAAAA), (AAA), 50
P1 (TAACA),.(TAAAA) (AAAAA) (TAAAA), (AAA), 50
C1 (TAACA),,(T),(TAAAA),.(AAA), 57
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Figure 3. Sanger sequencing results for the sample of (a) case C3, who has 17 (TAAAA) repeats, (b) case C2, who has 15
(TAAAA) repeats, (c) case C9, who has 31 (TAACA) and 5 (TAAAA) repeats

The exact size of repeats can be determined by
Southern blot analysis, but due to its time-consuming
and costly nature, it is not used in routine genetic
diagnosis of SCA36. In four presymptomatic cases,
only normal alleles were detected.

Discussion

It has long been known that SCAs caused by dynamic
mutations occur with varying frequencies depending
on the population, a phenomenon associated with
the founder effect [13,14]. Spinocerebellar ataxia type
15 (SCA15), characterized by very slow progression
and mostly pure cerebellar ataxia, has been reported
worldwide, including in Australia [7,12,15,16], England

[16,17], Japan [18-22], ltaly [23,24], Germany [25],
and predominantly in Western European families [26].
Most SCA15 patients present with classic signs of
cerebellar ataxia, including gait and limb/truncal ataxia,
dysphagia, and titubation; some may also exhibit
pyramidal signs [18,23]. Despite the widespread occur-
rence of SCA15 in Europe, we did not detect any cas-
es among 350 Polish individuals affected by SCAs.
Spinocerebellar ataxia type 31 (SCA31) is caused
by a 22.5-kb insertion containing complex pentanucle-
otide repeats, including (TGGAA)_ within the introns of
the brain-expressed associated with NEDD4 (BEANT)
and thymidine kinase 2 (TK2) genes, which are tran-
scribed in opposite directions [8]. Most SCA31 patients
present with cerebellar syndrome and late-onset [27]
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ataxia of the trunk and limbs, dysarthria [28,29], de-
creased muscle tone, and pyramidal signs. A distinc-
tive feature described in many SCA31 patients is hear-
ing loss [30,31]. Studies by Sato et al. (2009) [8] and
Ishikawa et al. (2011) [32] have shown that the mu-
tation site in SCA31 varies greatly depending on the
population and consists of different combinations of
(TGGAA) , (TAGAA) , (TACAA) , (GAAAA) , (TAACA),,
(TGAAA)., and (TAAAA) . Among these pentanucleo-
tide repeats, only (TGGAA) segregates with the dis-
ease and is abundant in the centromeres of several
human chromosomes [8,32,33]. In Polish controls, the
SCA31 mutation site includes the pentanucleotide re-
peats of either (TAAAA) or (TAAAA) in combination
with (TAACA) , whereas (TAACA) and (TAAAA) , to-
gether with (AAAAA),, were found in a single Polish
patient. Notably, pentanucleotide polymorphic repeats
of (TAAAA) have been observed in both Japanese [8]
and European Caucasian [32] populations, while
(TAACA), has only been reported in European Cauca-
sian [32] populations. Moreover, similar to findings in
the European Caucasian population [32], the stretch of
(TGGAA), was not detected in the Polish population.
SCA31 is common and widely distributed in the Japa-
nese population, with a strong founder effect [8,33]. In
contrast, it is rare or absent in Chinese [29,34] and Eu-
ropean Caucasian [32] populations. Furthermore, the
SCA31 mutation site is associated with pentanucleo-
tide repeat sequences of variable composition (pure in
the European Caucasian [32] population and complex
in the Japanese [8] population) and varying numbers of
pentamers, complicating the interpretation of diagnos-
tic testing for SCA31. Additional cases must be studied
to comprehensively investigate the structure of pen-
tanucleotide repeats in the BEANT gene across other
European countries. Our study has certain limitations,
including a small sample size for SCA31 testing, the
lack of an RP-PCR assay, and the absence of South-
ern hybridization. Future research will be necessary to
address these gaps.

Another presented disease is spinocerebellar
ataxia type 36 (SCA36) also described as late-on-
set ataxia [35]. It is caused by the expansion of
(GGCCTG), hexanucleotide repeats in the first intron
of the nucleolar protein 56 gene (NOP56) located on
chromosome 20 [9]. SCA36 has been identified in
Japanese [9,35,36], Spanish [35,37,38], French [35],
Portuguese [35], German [35], Chinese [35,39], and
U.S. [40] populations.

SCAS36 patients primarily exhibit progressive cere-
bellar ataxia, gait disturbances, truncal instability,
dysarthria, and postural tremor [9]. Other symptoms
include hearing impairment [35,37], cognitive impair-
ment, reduced sensory action potentials [35], and,
in some cases, motor neuron involvement, including

tongue atrophy [9,35], skeletal muscle atrophy, and
fasciculations [9].

In Polish patients, the mean age at onset was 47.75
years, indicating a definitive late-onset condition, with
ataxia as the first symptom. Cerebellar atrophy was
present in all confirmed cases. Tongue fasciculation
and atrophy were observed, while muscle atrophy was
infrequently noted in one patient. Cognitive decline
and mood disturbances were absent in all cases.

Several studies have shown that the pathogenic
expanded allele in SCA36 is generally large, rang-
ing from approximately 650 to 2,500 repeats [9,37].
However, the identification of shorter expansions, con-
taining 25 to 31 hexanucleotide repeats in the NOP56
gene in three affected ataxia patients [35], suggests
that SCA36 can be caused by both large and short
expansions [9,35,37].

The prevalence of SCA36 varies across populations.
Previous studies have shown the highest occurrence
of SCA36 in Spain (Costa da Morte, Galicia region),
accounting for 6.3% of cases (n=160) [37]. In contrast,
SCA36 is uncommon or ultra-rare in U.S. or German
populations and accounts for 0.7% (n=577) [40] or
0% (n=175) [35], respectively. Furthermore, preva-
lence of SCA36 varies depending on the region, e.g.,
in the Chinese population it ranges from 0.6% (n=512)
in Han Chinese [39] to 2.3% (n=601) in Mainland
China [41]. Interestingly, the presence of SCA36 in
Poland is unexpected given its absence in neighboring
Germany [35]. Its prevalence in the Polish population
(3.1%, n=350) is comparable to that in the Japanese
population (3.6%, n=251) [9]. This indicates the need
for molecular testing for SCA36 in Polish patients with
suspected hereditary ataxia of unknown etiology.

The occurrence of rare spinocerebellar ataxia sub-
types varies depending on the population. Molecular
testing for these inherited ataxias should take into ac-
count the specific distribution of SCA subtypes within
each population.
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